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Two problems of optimal design of concentr ic  annular plates a re  considered.  The plates a re  made 
f rom an anisotropic composite mater ia l  and are  loaded by a uniform p res su re  p either along the inner or  
outer contour.  Using the procedure  of setting up rational designs [1, 2], solutions a re  written down which 
a re  not optimal but are  subsequently numerical ly  improved. 

The mater ia l  is assumed to consis t  of a bonding matr ix re inforced by thin high-s t rength f ibers .  When 
setting up the basic equations, it is eonside'red as a solid anisotropic medium. The f ibers are  oriented in 
radial  (1) and c i rcumferent ia l  (2) direct ions.  The volume intensities of the re inforcement  have the same 
values s 1 and s 2. These are  nonnegative quantities whose sum must not exceed a cer tain value s* deter -  
mined f rom technological considerat ions.  

It is assumed that the radial s t r e s ses  al and the c i rcumferent ia l  s t r e s ses  a2 a re  connected with the 
corresponding s t ra ins  r and ~2 and the intensity of re inforcement  by the l inear  relationship 

~t = Es~zz (~ = 1, 2) ( 1 )  

where E is a constant of the mater ia l .  

The s t ra ins  are  bounded by a cer tain limiting value ~*. 

For  the radii  a, b (a <b)of  the plate and a constant thickness H the volume of re inforcement  iswri t ten  
in the fo rm 

b 
V = 2~H .f (sl -t- s~) r dr (2) 

a 

In order  to make the solutions suitable for  mater ia ls  with any values of the constants E, s*, ~*, we 
introduce the dimensionless quantities 

e f = a i / s * ~  ~ i f s i l 2 s * !  "Q=ai/2Es~ (3) 

q = p / 2Es'a*~ W = V / ~Ha~s * 

which retain all the names of the corresponding quantities with dimensions.  

The var iables  el, Ti, ~i a re  functions of the dimensionless radius p =fla. 

According to the law (1) the intensities of re inforcement  can be expressed  in t e rms  of s t r e s ses  and 
s trains  ~i =~'i/ei �9 The basic quantities T1, ~'2, el, e2 satisfy the conditions of equil ibrium and compatibility 

"r~ = pd'~l/dp + ,1, el = pde~/dp + e~ (4)  

and constraints  in the fo rm of inequalities determined by the requirements  of posit iveness of re inforcement  
intensity and boundedness of s t rains  and the overall  re inforcement  intensity, 
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P r o b l e m  1. A u n i f o r m  p r e s s u r e  q a c t s  on the  i n n e r  c o n t r o u r  (p = 
1); the  o u t e r  c on tou r  (p = 2) is  f r e e .  A p l a t e  hav ing  the  l e a s t  v o l u m e  of 
r e i n f o r c e m e n t  and s u p p o r t i n g  a g iven  l o a d  i s  to be de s igned .  

As  i s  shown in [2], u s ing  the  so lu t i on  of the  p r o b l e m  of the  t h e o r y  
of e l a s t i c i t y  fo r  an i s o t r o p i c  annu lus ,  we can s e t  up a r a t i o n a l  d e s i g n  of 
an a n i s o t r o p i c  body g iven  by the fo l lowing func t ions ,  which  h e r e  wi l l  be 
t aken  a s  the  in i t i a l  a p p r o x i m a t i o n :  

"rl ~ = el ~ ~ --  0.8 / p2 _{_ 0.2~ ~1 ~ __~ i 
~2o =,e2* = 0.8 / 9~ _}_ 0.2, ~2o _~. t (6)  

The p r o c e d u r e  of ob ta in ing  t h e s e  func t ions  is  i n e s s e n t i a l  fo r  the  
p r e s e n t  d i s c u s s i o n ,  s i n c e  we can  e a s i l y  conv ince  o u r s e l v e s  i m m e d i a t e l y  
tha t  (6) i ndeed  s a t i s f i e s  the  r e l a t i o n s h i p s  (4) and  (5). The  bounda ry  v a l u e s  
of the  func t ion  ~- 2 ~ a l s o  a g r e e  wi th  the  g iven  m e t h o d  of l oa d ing  the  annu lus :  

p r e s s u r e  is  a b s e n t  on the o u t e r  c o n t o u r  andT  1~ a p r e s s u r e  q is  g iven  on the i n n e r  con tou r  and ~1(1) = 
- 0 . 6 .  Thus ,  fo r  a p r e s s u r e  q = 0 . 6  the  func t ion  (6) d e t e r m i n e s  a r a t i o n a l  d e s i g n  wh ich  wi l l  be i m p r o v e d  by 
a n u m e r i c a l  m e t h o d ,  so  tha t  fo r  the  u n a l t e r e d  v a l u e  of q we can  f ind the new func t ions  ~'1, ~'2, e l ,  e2 and [1, 
~2 e x p r e s s e d  in t e r m s  of t h e m ,  w h i c h  g ive  a s m a l l e r  v a l u e  of the  func t iona l  (4). 

F o r  the  i n i t i a l  a p p r o x i m a t i o n  (6) the  r e l a t i v e  v o l u m e  of r e i n f o r c e m e n t  W ~ = 3. 

The  so lu t i on  of the  p r o b l e m  w a s  c a r r i e d  out  by the  m e t h o d  of l o c a l  v a r i a t i o n s  [3]. The  i n t e r v a l  [1, 2] 
of the  v a r i a b l e  is  d iv ided  into 100 equa l  p a r t s ,  con t inuous  func t ions  a r e  r e p l a c e d  by d i s c r e t e  ones ,  and  the 
d i f f e r e n t i a l  r e l a t i o n s h i p s  a r e  r e p l a c e d  by f in i t e  d i f f e r e n c e  r e l a t i o n s h i p s .  In the  f i r s t  v a r i a t i o n  c y c l e  the  
func t ions  r e c e i v e d  an i n c r e m e n t  h = 0 . 0 1 ,  whi l e  in the  l a s t  c y c l e  they  r e c e i v e d  h = 0 . 0 0 0 4 .  The  l a s t  but  one 
v a r i a t i o n  c y c l e  wi th  a s t ep  of h = 0.00167 gave  the v a l u e  of W d i f f e r e n t  by  only 0.5~o f r o m  the  p r e c e d i n g  f ina l  
v a l u e  equa l  to W =2 .427 .  The  e c o n o m y  in the  v o l u m e  of r e i n f o r c e m e n t ,  in c o m p a r i s o n  wi th  the  in i t i a l  d e -  
s ign ,  a m o u n t s  to  19%. The  p r o g r a m  w a s  p r o d u c e d  in the  A L G E M  language ,  and  the c o m p u t a t i o n  was  c a r -  
r i e d  out  on a M i n s k - 2 2  c o m p u t e r .  

In  F ig .  1 we h a v e  p r e s e n t e d  the func t ions  ~1, ~2, which  def ine  the  r e i n f o r c e m e n t  i n t e n s i t i e s  in the  r a d i a l  
and c i r c u m f e r e n t i a l  d i r e c t i o n s  fo r  the  f ina l  d e s i g n  (the d a s h e d  l ine  i s  the  i n i t i a l  g r a p h  of t h e s e  func t ions  
a c c o r d i n g  to  (6)). 

P r o b l e m  2. A u n i f o r m  p r e s s u r e  q a c t s  on the  o u t e r  con tour  (p =2) of the  p la te ;  the  i n n e r  con tour  
(p =1) is  f r e e .  A p l a t e  is  to  be d e s i g n e d  fo r  w h i c h  the p a r a m e t e r  q a s s u m e s  a m a x i m u m  v a l u e ,  i . e . ,  a p l a t e  
w h i c h  i s  o p t i m a l  wi th  r e s p e c t  to s t r e n g t h .  The  v o l u m e  of r e i n f o r c e m e n t  m u s t  not  e x c e e d  the m a x i m u m p o s -  
s i b l e  va lue ,  equa l  to  3. 

We  know of a d e s i g n  w h i c h  i s  o p t i m a l  wi th  r e s p e c t  to the m a s s  ( see  [2]) and which ,  fo r  the d i m e n s i o n -  
l e s s  p r e s s u r e  qo=0.375,  has  the  v o l u m e  of r e i n f o r c e m e n t  W ~ =1.5 and is c h a r a c t e r i z e d  by the f o l l o w i n g f u n c -  
t i o n s :  

T1 ~ = 0 . 5 / 1 3  ~ - -  0 . 5  = - -  ~1 ~  e l  ~ - - - - t  

•~ = -0.5/p ~ - 0.5 = - ~ ~  e~ ~ = - i  (7) 

I t  is  e a s y  to s e e  tha t  t h e s e  func t ions  s a t i s f y  the  r e l a t i o n s h i p s  (4), (5) and  the  b o u n d a r y  cond i t i ons  of 
the  g iven  p r o b l e m .  P r o c e e d i n g  f r o m  the func t ions  (7) a s  f r o m  the in i t i a l  a p p r o x i m a t i o n ,  we m u s t  v a r y  t h e m  
in such  a way  tha t  the  func t iona l  q = - - T  1 (2) wou ld  a s s u m e  the  l a r g e s t  v a l u e .  T h i s  func t iona l ,  de f ined  on 
the  func t ions  ~'l and  e 2 (the r e s t  of t h e m  a r e  e x p r e s s e d  in t e r m s  of t h e s e  two,  a s  can  be s e e n  f r o m  (4) and  
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(5)), is not additive. In view of this, the method of local var ia t ions  in the given case is not applicable, and 
the following algori thm of improving the functional is used to solve the problem. 

The interval of variat ion of the independent var iable  [1, 2] is divided into 100 different parts  with the 
points Pk (0 -< k -< 100). Instead of continuous functions we introduce discrete  functions; for example, instead 
of the basic functions Tl(p) and e2(p) we consider the functions ~-[k], elk], where ~-[k] =-Ti(Pk) , e[k]= -e2(Pk) 
(the minus sign is introduced to make positive the functions subject to variation). The derivatives of these 
functions are  replaced by the "left" ra t ios  of finite differences;  for example, d~-l/dp for p =Pk is replaced 
by - ( T [ k ] - ~  [k-1]) /100.  The relat ionships (4), (5) and the expression for the re inforcement  volume are 
rewri t ten in such a way that they contain only the functions T[k], e[k] whose initial approximations T ~ e ~ 
are  found f rom (7). Starting f rom these functions, we construct  the f i rs t  tentative approximation ~pl, giving 
the value of the function 7, for k=100,  the increment  

~ ,  [k] -= ~~ [k] (k ~ 0,  t ,  2, . . . ,  99),  % t  [ t00]  = ~~ [t00] -}- h 

If this function satisfies all constraints  I{ (given by the conditions (4), (5), the boundary conditions, 
and the constraint  on the re inforcement  volume W-< 3), then we consider  it the f i rs t  t rue approximation r t. 
Each new tentative approximation is s tar ted to be set up f rom the fact that Ti[100] is given a positive in- 
crement .  In view of this the functional q=T[100] =Ti(plO 0) in such a process  cannot decrease .  

In Fig. 2 with thick lines we have provisionally depicted the true approximation for the functions,while 
with thin lines we have shown a tentative approximation. The process  of construct ing the la t ter  went as 
far  as the point k = j - 1 .  With dashed lines we have shown possible var iants  of setting up tentative approxi-  
mations at the point j - 1 .  If for any choice of values at the point j - 1  the constraints  R on the tentative func- 
tions, which are  being tested at the point j, a re  not fulfilled, then all tentative approximations (thin lines) 
are  discarded and the variat ion process  is s tar ted  f rom the beginning (with a smal le r  value of the step h), 
proceeding f rom the last  true approximation (thick lines). If, however, at the point j the conditions R are  
fulfilled, they are  verified at the point j - 1 .  If they are  satisfied at this point, the tentative approximation 
is considered to be true, since on the left of this point the functions and their  derivatives were not varied; 
otherwise,  we go over to the point j - 2 .  

The sort ing out of var iants  produced in this manner  does not ensure the comparison of all functions 
which are  close to the given true approximation, so that we cannot say that the process  just described nec-  
essar i ly  leads to the maximum value of the functional. However, it leads to an improvement  in the func- 
tional. In pract ice  this improvement  can be ve ry  substantial.  

A p rog ram was set up in ALGOL according to this algori thm and the computation was ca r r i ed  out 
on a BI~SM-4 computer  at the Computer  Center  of Moscow State University.  The final graphs of the func- 
tions [1 and ~2 are  shown in Fig. 3. The discontinuity of the function ~2 does not contradict  the nature of 
the problem, since the re inforcement  intensity in the c i rcumferent ia l  direction can indeed va ry  with a jump. 
The functions e 1 and e 2 var ied  only slightly; here we vir tually can consider  e t - - 1, so that the graph for 
~t gives a full picture of the final var ian t  of the basic function T 1 subject to variation.  The initial fo rm of 
this function is shown with a dashed line ff 1~ !~ 

The var iat ion step was var ied  f rom 0.01 to 0.61 �9 10 -6. The la rges t  value of the functional was q = 
0.621; the re inforcement  volume increased up to W =2.57. 

It can be shown that the problem considered here has an exact solution yielding an absolutly optimal 
design 

�9 ~* ~ - - i  / p~ - -  I ---- - -~2",  e2* ~ - -  I 

The re inforcement  volume of such a design equals the limiting possible value W*=3;  the s trength is 
q*=0.75.  In Fig. 3 the dashed lines depict the dependence for the continuous functions 0.5~1" , 0.5~2". Com- 
paring them with the numerical  solution obtained, we can conclude that it leads to a discontinuous function 
~2 which is very  much different f rom ~2". 

The quantitative resul ts  of the numerical  solution must  be regarded  as sat isfactory;  the specific 
s t rength q/W of the design set up by the numerical  method is roughly equal to the specific s trength of the 
optimal design. The relat ive shortage with respec t  to the s t rength amounts to 17%; with respec t  to the r e - ,  
inforcement  volume it amounts to 14%. In comparison with the initial approximation the s t rength increased 
by 65%. 
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